Manin Products, Koszul Duality, Loday Algebras and Deligne Conjecture
نویسنده
چکیده
In this article we give a conceptual definition of Manin products in any category endowed with two coherent monoidal products. This construction can be applied to associative algebras, non-symmetric operads, operads, colored operads, and properads presented by generators and relations. These two products, called black and white, are dual to each other under Koszul duality functor. We study their properties and compute several examples of black and white products for operads. These products allow us to define natural operations on the chain complex defining cohomology theories. With these operations, we are able to prove that Deligne’s conjecture holds for a general class of operads and is not specific to the case of associative algebras. Finally, we prove generalized versions of a few conjectures raised by M. Aguiar and J.-L. Loday related to the Koszul property of operads defined by black products. These operads provide infinitely many examples for this generalized Deligne’s conjecture.
منابع مشابه
Completing the Operadic Butterfly
We complete a certain diagram (the operadic butterfly) of categories of algebras involving Com, As, and Lie by constructing a type of algebras which have 4 generating operations and 16 relations. The associated operad is self-dual for Koszul duality.
متن کاملDerived bracket construction and Manin products
We will extend the classical derived bracket construction to any algebra over a binary quadratic operad. We will show that the derived product construction is a functor given by the Manin white product with the operad of permutation algebras. As an application, we will show that the operad of prePoisson algebras is isomorphic to Manin black product of the Poisson operad with the preLie operad. ...
متن کاملGerstenhaber Structure and Deligne’s Conjecture for Loday Algebras
A method for establishing a Gerstenhaber algebra structure on the cohomology of Loday-type algebras is presented. This method is then applied to dendriform dialgebras and three types of trialgebras introduced by Loday and Ronco. Along the way, our results are combined with a result of McClure-Smith to prove an analogue of Deligne’s conjecture for Loday algebras.
متن کاملIwahori-Matsumoto involution and linear Koszul Duality
In this paper we use linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras studied in [MR1, MR2] to give a geometric realization of the Iwahori–Matsumoto involution of affine Hecke algebras. More generally we prove that linear Koszul duality is compatible with convolution in a general context related to convolution algebras.
متن کاملPluriassociative algebras I: The pluriassociative operad
Diassociative algebras form a categoy of algebras recently introduced by Loday. A diassociative algebra is a vector space endowed with two associative binary operations satisfying some very natural relations. Any diassociative algebra is an algebra over the diassociative operad, and, among its most notable properties, this operad is the Koszul dual of the dendriform operad. We introduce here, b...
متن کامل